Effects of different types and concentration of salts on the rheological and thermal properties of sin croaker and shortfin scad skin gelatin

ثبت نشده
چکیده

The aims of this study were to examine the effect of salts (CaCl2, CaSO4 and MgSO4) on the rheological and thermal properties of gelatin extracted from the skins of tropical fishes, sin croaker (Johnius dussumeiri) and shortfin scad (Decapterus macrosoma). It was found that the melting temperatures of fish skin gelatins were increased by 1.5 times as compared to bovine gelatin which was only increased by 0.5 times after holding for 2 h at 5°C. The storage (G’) and loss (G”) modulus of fish skin gelatins were improved with the addition of calcium sulphate (CaSO4) and magnesium sulphate (MgSO4), respectively. However, the storage (G’) and loss (G”) modulus of gelatin solutions were decreased with the addition of calcium chloride (CaCl2). Magnesium sulphate (MgSO4) was found to be an effective salt to improve the bloom value, elastic and viscous moduli of the fish skin gelatin. This study showed that shortfin scad skin gelatin with salt addition possessed better thermal and rheological properties than sin croaker gelatin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Thermal Stability of Starch in Formate Fluids for Drilling High Temperature Shales

Starch is one of the most widely used biopolymers in water based drilling fluids to control fluid loss. The thermal stability of starch in common drilling fluids is low (93 °C). In this study, the thermal stability of starch has been evaluated in sodium/potassium formate and potassium chloride fluids. Samples of mud were prepared by formate salts (sodium and potassium) and potassium chloride wi...

متن کامل

Rheological, thermal and tensile properties of PE/nanoclay nanocomposites and PE/nanoclay nanocomposite cast films

The effects of three different mixers, two different feeding orders and nanoclay content on the structure development and rheological properties of PE/nanoclay nanocomposite samples were investigated. Fractional Zener and Carreau–Yasuda models were applied to discuss the melt linear viscoelastic properties of the samples. Moreover, scaling law for fractal networks was used to quantify clay disp...

متن کامل

Thermal and Rheological Properties Improvement of Oil-based Drilling Fluids Using Multi-walled Carbon Nanotubes (MWCNT)

In this paper, we detail our results for the impact of MWCNT on the thermal and rheological properties of oil-based drilling muds. Our analysis considers the effects of time, temperature, and MWCNT volume fraction. The scanning electron microscopy imaging technique was used to monitor the MWCNTsdispersion quality. The experimental results unveil a considerable enhancement in the thermal conduct...

متن کامل

Physical and Rheological Properties of Oil in Water Heat Stable Emulsions Made from Different Stabilizers

Oil in water emulsions have attracted considerable attention in food industry due to their large applications. In this study, the effect of thermal treatment on oil in water emulsions (o/w) containing 40% oil was studied. The emulsions were prepared using xanthan gum, guar gum and carboxymethyl cellulose as stabilizer and polyoxyethylen sorbitan monooleat as emulsifier. A mixture design was use...

متن کامل

The Effect of Polyethylene Glycol and Nanoclay on the Rheological Behavior of Dispersing Cationic Polyurethane Nanocomposites

Cationic waterborne polyurethane as a new dispersing polymer was synthesized by using relatively hydrophilic polyols. Dispersing cationic polyurethane (DCPU) nanocomposites were prepared using isophorone diisocyanate (IPDI), polyethylene glycol (PEG) with different molecular weights (Mn=200, 400, 600,and1000 g/mol), N-methyl diethanolamine (MDEA), dibutyltin dilaurate (DBTDL) and different perc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014